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ABSTRACT
An innovative hyperbolic preconditioning technique is developed

for the numerical solution of the Helmholtz equation which governs acous-
tic propagation in ducts. Two pseudo-time parameters are used to pro-
duce an explicit iterative finite difference scheme. This scheme eliminates
the large matrix storage requirements normally associated with numeri-
cal solutions to the Helmholtz equation. The solution procedure is very
fast when compared to other transient and steady methods. Optimization
and an error analysis of the preconditioning factors are present. For vali-
dation, the method is applied to sound propagation in a 2D semi-infinite
hard wall duct.

INTRODUCTION
The Helmholtz equation plays an important role in the study of

acoustics as well as electromagnetic propagation and quantum mechan-
ics. Unfortunately, large matrix storage requirements are generally asso-
ciated with numerical solutions of the Helmholtz equation. To reduce
these requirements, Bayless, Goldstein, and Turkel (1982) developed an
iterative approach to solve the associated matrix equation. More recently,
Baumeister and Kreider (1996) developed a preconditioned transient fi-
nite difference scheme to solve the Helmholtz equation as well as the
more general linearized potential flow equations. Their introduction of
time dependence into the Helmholtz equation eliminates the large ma-
trix storage requirements of the algorithm. This paper is concerned with
the development of a more efficient preconditioning method to acceler-
ate convergence for the Helmholtz equation.

A standard technique of solving steady state partial differential equa-
tions is to march their time dependent form until the steady state is reached.
When the transient is not of interest, acceleration parameters can be
employed to speed the convergence. This type of differential manipula-
tion is often associated with preconditioning of both time dependent
(Turkel, Fiterman and van Leer, 1993) and time independent (Turkel and
Arnone, 1993) partial differential equations. Generally, acceleration
parameters destroy the time accuracy of the solution. Turkel (1982, pp. 31)

addresses many of the issues associated with the acceleration to a steady
state solution.

In this paper, new preconditioning factors are introduced to speed
the convergence of the transient finite difference scheme in solving the
Helmholtz equation. Solution times are reduced by an order of magni-
tude over the previous approach. For validation, the method is applied to
plane wave sound propagation in a 2D semi-infinite hard wall duct. The
paper contains a description of the problem, the brief development of the
preconditioning technique, the introduction of the acceleration param-
eters, the finite difference formulation with a stability analysis, and sev-
eral numerical examples with error estimates.

NOMENCLATURE
Co

# dimensional speed of sound

C dimensionless speed of sound, Eq. (2)

D# dimensional duct height

D duct height, D#/D#, D = 1

ek total L1 convergence error at step k, Eq. (16)

ekλ ek error per axial wavelength, Eq. (17)

f# dimensional frequency

f dimensionless frequency, f#D#/Co
#, Eq. (2)

i  −1

L length, L#/D#

|M| absolute value of Mach number, Eq. (12)
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n unit outward normal

t dimensionless time, f#t#

tT dimensionless total calculation time

∆t time step

x dimensionless axial coordinate, x#/D#

∆x axial grid spacing

y dimensionless transverse coordinate, y#/D#

∆y transverse grid spacing

α acceleration parameter

β acceleration parameter

φ' transient potential, φ#/Co
#D# Eq. (1)

φ transient potential in frequency domain, Eq. (6)

ψ Fourier transformed potential, Eq. (3)

ω dimensionless frequency, 2πf

Subscripts

i axial index, see Fig. 1

j transverse index, see Fig. 1

o ambient or reference condition

Superscript

# dimensional quantity

k time step

– complex conjugate

PROBLEM STATEMENT
The problem under consideration here is the development of pre-

conditioning acceleration factors to obtain the solution to the Helmholtz
equation. This method will have application to the general study of sound
propagation in ducts. The goal of the paper is to develop a stable, explicit
finite difference scheme that significantly reduces the computation time
required to solve the Helmholtz equation with a monochromatic noise
source. The formulation is applied to a semi-infinite duct with a planar
source at the duct inlet, as shown in Fig. 1.

HELMHOLTZ EQUATION AND BOUNDARY CONDITION
The governing differential equation for studying wave propagation

can be formulated in terms of a potential as

1
12

2

C
or ftt xx yy tt xx yy′ = ′ + ′ ′ = ′ + ′φ φ φ φ φ φ ( )

where φ'(x,y,t) is the dimensionless potential and subscripts indicate par-
tial differentiation with respect to subscripted variables. The conventional
normalization factors used to develop these nondimensional equations
are given in the NOMENCLATURE. The dimensionless frequency f is
defined as

f
f D

C Co
= =

# #

# ( )
1

2

where the superscript # indicates a dimensional quantity.
There are several ways to develop a frequency domain formulation

for Eq. (1). The Fourier Transform can be applied if the potential has a
multi-frequency content. In the monochromatic case, this is equivalent
to assuming that

′ = =− −φ ψ ψω π( , , ) ( , ) ( , ) ( )
# #

x y t x y e x y ei t i t2 3

which transforms Eq. (1) to the Helmholtz equation

0 42= + +ψ ψ ω ψxx yy ( )

where ω = 2 π f.
At the entrance of the duct, x = 0, the source is assumed to have the

form

′ = =−φ πe ori t2 1 5Ψ ( )

Also, the duct is assumed to be semi-infinite in length so that waves
propagate only to the right.

PRECONDITIONED HELMHOLTZ EQUATION
The Helmholtz equation is preconditioned by assuming that

′ = =− −φ φ φω π( , , ) ( , , ) ( , , ) ( )
# #

x y t x y t e x y t ei t i t2 6

See Baumeister and Kreider (1996) for further discussion.  This differs
from the classical monochromatic transformation in that the amplitude φ
(no prime) is no longer independent of time. Under this transformation,
Eq. (1) becomes

f iftt t xx yy
2 22 7φ ωφ φ φ ω φ− = + + ( )
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The only difference between the Helmholtz Eqs. (4) and (7) is
the presence of the time derivative terms on the left hand side. Physi-
cally, the time dependence in φ(x,y,t) is caused by assuming that the duct
is quiescent at time 0, and that the source is turned on at that instant. A
series of numerical calculations reported by Baumeister and Kreider
(1996) show that

lim ( , , ) ( , ) ( )
t

x y t x y
→∞

=φ ψ 8

when the f2φtt is dropped (parabolic approximation).

ACCELERATION PARAMETERS
To speed the convergence to the steady state solution ψ(x,y), accel-

eration parameters α and β are added to Eq. (7) as follows:

α φ β ωφ φ φ ω φf iftt t xx yy
2 22 9− = + + ( )

This is a generalization of the preconditioning done in Baumeister and
Kreider (1996), which dealt with the α = 0, β = 1 case (parabolic
approximation). After the formulation of the difference equations,
the acceleration of convergence is tested over a range of acceleration
parameters.

FINITE DIFFERENCE EQUATIONS
The potential at the spatial grid points (xi,yj) (Fig. 1) is determined

by iterating the initial condition over time steps tk = k∆t. Away from the
duct boundaries, each partial derivative in Eq. (9) can be expressed using
central differences, which yields

φ α β ω φ α ω

φ φ

φ φ

i j
k

i j
k

i j
k

i j
k

i j
k

f

t

i f

t

f

t x y

x x

y

, ,

, ,

,

( )

+

+ −

+

−






= − − +
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where ∆x, ∆y, and ∆t are the space and time mesh spacings respectively,

and φk
ij = φ(xi,yj,t

k). Equation (10) is an explicit two step scheme. The

field values at t0 and t-1 are assumed zero because the initial field is
quiescent.

The expressions for the difference equations at the hard wall bound-
aries (y=0 & y = 1) employ the boundary condition

∇ • =φ n 0 11( )
where n is the unit outward normal. Baumeister (1980) gives precise
details for generating the difference equations on the boundaries.

STABILITY
A von Neumann stability analysis is used to determine the condi-

tions on ∆t, ∆x, and ∆y required for conditional stability as a function of

the acceleration parameters α and β. Conditional stability means that the
amplification factor, which describes how errors propagate from one time
step to the next, has magnitude one. Thus, when ∆t, ∆x, and ∆y satisfy
the stability criteria, errors are not magnified or diminished in magni-
tude. This is a desirable property, since the numerical formulation can-
not distinguish between a roundoff error and a small physical oscillation.

For the case α = 0 and β = 1, treated by Baumeister and Kreider
(1996) and herein denoted the parabolic preconditioner (because the sec-
ond order time derivative does not appear), the stability analysis indi-
cates that the method is conditionally stable, subject to the condition
(conservative estimate of Mach number effects)

∆

∆ ∆ ∆

t

f x y

M

f x

<




 +



















− +

1

2 1 1
12

2 2

ω
π

( )

In a typical application, f is set by the operating conditions in the duct.
The grid spacing parameters ∆x and ∆y are set to resolve the estimated
spatial harmonic variation of the potential field and ∆t is chosen to sat-
isfy Eq. (12). Of course, the stability analysis does not take into account
boundary conditions. For stability, gradient boundary conditions gener-
ally require the use of smaller ∆t than predicted by Eq. (12).

For the case α ≠ 0 and β ≠ 0, herein denoted the mixed preconditioner,
the stability analysis indicates that the method is conditionally stable,
subject to the two conditions

∆t < −( )1
132

π
β α ( )

and

∆

∆ ∆ ∆ ∆

t
f

x y

f

x y

<
+ −

+
+ −



















α
ω

βπ
ω

2

2 2

2

2

2 2

2

2

1 1

4

1 1

4

14( )

Generally, the second squared term on the right side of (14) is much
smaller than the first term. For a typical scenario (∆x = 0.05, ∆y = 0.1,
f = 1, α = 0.95, β = 1), ∆t < 0.071 from Eq. (13) and ∆t < 0.044 from
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Eq. (14). Consequently, the stability criteria yield ∆t<.044 in this mixed
case example.

NUMERICAL EXAMPLES
Let a plane wave propagate from the left into a semi infinite  quies-

cent duct. The potential field is to be computed in the duct for 0 < x < 1.
Examples 1 to 3 illustrate the effects of changing α and β with dimen-
sionless frequency f = 1 on the grid specified by ∆x = 0.05 and ∆y = 0.5.
Example 4 shows the effect of increasing the frequency, by using f = 5.

Because boundary conditions can introduce instabilities (Baumeister,
1982 and Cabelli, 1982) into otherwise stable finite difference schemes,
it is important to test the iteration scheme for convergence in the absence
of an exit boundary condition. Therefore, in these examples, the compu-
tational boundary is set at x = 50, far enough away from the true bound-
ary x = 1 that any artifacts arising from the exit boundary condition do
not affect the solution in 0 < x < 1.

The numerical results for plane wave propagation are compared to
the exact results of the steady state solution, given by

ψ ω( ) ( )x ei x= 15

In the region 0 < x < 1, the L1 norm of the global error ek between the
exact solution ψ and the numerical solution φk at time step k is used as a
meas-ure of the convergence.  The error is defined as

e dy dxk
k k= −( ) −( )∫∫ φ ψ φ ψ

0

1

0

1
16. ( )

Example 1. Parabolic Preconditioning—α = 0, β = 1, f = 1.

The choice of α = 0 eliminates the second order time derivative.
The time increment ∆t is set at 0.007. The maximum stable value, from
Eq. (12), is 0.00797. The numerical and exact solutions are compared in
Fig. 2(a) (real and imaginary parts of the potential) and in Fig. 2(b) (mag-
nitude of the potential) after 1000 iterations. The numerical solution shows
excellent agreement with the analytic solution. The error as a function of
the iteration number is shown in Fig. 3. After 1000 iterations, e1000 =
0.0171. This residual error is the result of the usual round off and trunca-
tion errors associated with finite differences.

Example 2. Mixed Preconditioning—α = 0.95, β = 1, f = 1.

The time increment ∆t is set at 0.04. The maximum stable value,
from Eq. (14), is 0.049. The error as a function of the iteration number is
shown in Fig. 4. After 100 iterations, the error is e100 = 0.0136201. It is
important to note that the number of iterations required for convergence
drops by an order of magnitude with mixed preconditioning as com-
pared to parabolic preconditioning (shown by dashed line in Fig. 4).
Therefore, a calculation which took 1 minute with the parabolic approach
would now take only 6 seconds with the Hyperbolic Approach. Again,
the numerical solution shows excellent agreement with the analytic so-
lution after 100 iterations. The plots of the magnitude and the real and
imaginary parts of the potential are virtually identical to Figs. 2(a) and
(b), and hence are omitted. Clearly, mixed preconditioning is superior to

parabolic preconditioning because the number of iterations required for
convergence is an order of magnitude lower.

Example 3. Mixed Preconditioning—α = 16, β = 4.25, f = 1.

The time increment ∆t is set at 0.2. The maximum stable value,
from Eq. (14), is 0.201. The error as a function of the number of itera-
tions is shown in Fig. 5.  After 500 iterations, e100 = 0.0136225.  The
results here are nearly identical to those shown in Fig. 4. The numerical
solution again shows excellent agreement with the analytic solution. As
before, the plots of magnitude and phase are omitted because they are
virtually identical to Figs. 2(a) and (b). In this example, with the intro-
duction of the large acceleration parameters, the time variable loses its
physical meaning. In effect, the large α reduces the effective speed of
propagation C in Eq. (1) which then requires a longer time for the tran-
sient φ to approximate the steady state solution ψ as required by Eq. (8).
However, the critical parameter is the number of iterations required to
obtain a solution. The convergence rates for examples 2 and 3 are
nearly identical.

Example 4. Mixed Preconditioning—α = 0.95, β = 1, f = 5.

To resolve the shorter wavelengths associated with the higher fre-
quency f = 5, ∆x is reduced by a factor of 5 to 0.01. The time increment
∆t is set at 0.04. The maximum stable value, from Eq. (14), is 0.0497.
The numerical and exact solutions are compared in Fig. 6(a) (real and
imaginary parts of the potential) and in Fig. 6(b) (magnitude of the po-
tential) after 1000 iterations. The numerical solution again shows excel-
lent agreement with the analytic solution. The error as a function of
iteration number is shown in Fig. 7. After 1000 iterations, e1000 = 0.0659.
This error is about 5 times higher than that for the f = 1 case. Since the
two solution plots show roughly the same degree of accuracy, the change
in total global error is apparently caused by the fact that there are 5 times
as many grid points in the f = 5 case. The number of grid points is pro-
portional to the number of axial wavelengths or frequency. So dividing
by the frequency gives a rough measure of the local error at each grid
point, which is, in this case,

e
e

fk
k

λ = = 0 0132 17. ( )

It should be noted that acceptable solutions can be obtained using fewer
iterations than the asymptotic values indicated by Figs. 7 to 9.

Optimal Acceleration P arameter s
Numerous numerical calculations were performed to determine the

optimal choice of α and β to reduce the number of iterations to conver-
gence. In these calculations α was set to 1 and β varied. Other choices
of α yield approximately the same rate of convergence. For
convergence with minimum iterations, the time increment ∆t and β were
set as follows:

∆

∆ ∆

t
f

x y

opt =
+ −

α
ω

2

2 2

21 1

4

18( )
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β α πopt optt= + 2 2 19∆ ( )

For α = 1, ∆x = 0.05, ∆y = 0.5 and f = 1, the optimal time increment
∆topt,from (18), is 0.0503. The optimal βopt is calculated to be 1.01244
from Eq. (19). The error as a function of the number of iterations is
shown in Fig. 8. After 100 iterations, e100 = 0.0137.  The converged error
is nearly identical to the α = 0.95 and β = 1.0 nonoptimal case shown in
Fig. 4. However, the optimal case reaches this error with nearly one order
of magnitude in fewer iterations. Also, the error curve is seen to be much
smoother. Therefore, a calculation which took 1 minute with the para-
bolic approach would now take only 1.8 seconds with the Hyperbolic
Approach. The numerical solution again shows excellent agreement with
the analytic solution. As before, the plots of magnitude and phase are
omitted because they are virtually identical to Figs. 2(a) and (b).

The number of iterations to obtain the final solution can be reduced
even further by increasing the spatial distance between nodes. For α = 1,
∆x = 0.0833 (66% increase), ∆y = 0.5 and f = 1, the optimal time incre-
ment ∆topt from (18) is 0.0851. The optimal βopt is calculated to be
1.03614 from Eq. (19) with a 1.001 factor of safety. The error as a func-
tion of the number of iterations is shown in Fig. 9. After 100 iterations,
e100 = 0.0398 which is approximately 3 times larger than the previous
case shown in Fig. 8 with ∆x = 0.05. However, this error is still accept-
able for accurate solutions. In fact, after 16 iterations, the error level has
dropped to 0.04732 which gives excellent results for phase and magni-
tude plots of the potential as shown in Figs. 10(a) and (b).

The speed at which the transient solution approaches the steady
state Helmholtz solution is now discussed.

Speed of Pr opagation
For the conventional wave equation, Pearson (1953) has shown that

the total time tT required for the steady state solution (15) to become
established in the duct is equal to the time for a plane wave propagating
at the speed of sound to reach the end of the duct. Similarly, with the
preconditioned Helmholtz Eq. (9) and α = 1, the steady state solution
ψ(x)to the Helmholtz equation propagates outward at the dimensionless
speed C, where from Eq. (2)

C
f

C

f D
o= =1

20
#

# # ( )

For a frequency f = 1, Fig. 11(a) shows the developing wave front
(real and imaginary parts) as a function of the iteration number while
Fig. 11(b) shows the magnitude of the potential. For this case,

t
L

C
Lf= = = • =1 1 1 21( )

As seen in Fig. 11, the solution moves to the right with a distinct front at
the speed C = 1. The front arrives at the exit at t ≈ 1.0.

Similarly, for a frequency f = 5, Fig. 12(a) shows the developing
wave front (real and imaginary parts) as a function of the iteration num-
ber while Fig. 12(b) shows the magnitude of the potential. For this case,

t
L

C
Lf= = = • =1 5 5 22( )

As seen in Fig. 12, the solution moves to the right with a distinct front at
the speed C = 0.2. The front arrives at the exit at t ≈ 5.0.

The number of axial grid points and the number of iterations re-
quired for convergence are both directly proportional to frequency. A
comparison of Figs. 11 and 12 shows the factor of 5 difference in the
number of required iterations when the frequency is increased by 5. For
increased frequency, the solution moves more slowly to the right. Gener-
ally, the solution time should be increased by 30 percent over that pre-
dicted by Eqs. (21) or (22) for more accurate results.

SOLUTION METHODS
With the approach developed in this paper, three different solution

techniques are now available to solve the Helmholtz equation, as shown
in Fig. 13. The Fourier transform approach in the right column, with
finite differences or finite elements, results in a matrix equation. Because
this matrix is not positive definite, matrix elimination solutions are gen-
erally employed, requiring extensive computer memory for high frequency
propagation. The transient solution to the hyperbolic wave equation,
shown in the left column, eliminates matrix storage requirements by
iterating finite difference approximations to the steady state solution.

The third option, preconditioning using the mixed formulation (α ≠ 0,
β ≠ 0), is shown in the center column. This approach eliminates matrix
storage requirements, and has less stringent stability conditions than the
transient solution, so it converges in fewer iterations.

CONCLUSION
Accelerated numerical preconditioning of the Helmholtz equation

has been developed. The field is iterated in time from an initial value of
0 to attain the steady state solution. The method eliminates the large
matrix storage requirements of steady state finite difference or finite el-
ement techniques in the frequency domain. In each example provided,
the numerical solution quickly and accurately converges to the exact
steady state solution. The hyperbolic preconditioning developed in this
paper has more than an order of magnitude faster convergence than the
previously developed parabolic preconditioning approach.
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Figure 1.—Structured finite difference-time dependent (FD-TD)
   mesh for semi-infinite rectangular duct.
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Figure 2.—Analytical and numerical potential profile along wall for
   plane wave propagating in a semi-infinite hard walled duct (f = 1).
   (a) Real and imaginary parts. (b) Magnitude. 
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Figure 3.—Integrated solution error as a function of the number of
   iterations of the finite difference equations (f = 1)          parabolic
   approximation.
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Figure 4.—Integrated solution error as a function of the number of
   iterations of the finite difference equations (f = 1).
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Figure 5.—Integrated solution error as a function of the number of
   iterations of the finite difference equations (f = 1).

a = 16; b = 4.25
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Figure 6.—Analytical and numerical potential profile along wall for
   plane wave propagating in a semi-infinite hard walled duct (f = 5).
   (a) Real and imaginary parts. (b) Magnitude. 
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Figure 7.—Integrated solution error as a function of the number of
   iterations of the finite difference equations (f = 5).

a = 0.95; b = 1
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Figure 8.—Integrated solution error as a function of the number of
   iterations of the finite difference equations (f = 1) with optimal
   parameters.

a = .95;
b = 1
(Fig 4)

Parabolic
a = 0; b = 1
(Fig 3)

Optimum
a = 1;
b = 1.01244

10–1

101

100

10–2

Number of iterations
104103102101100

In
te

g
ra

te
d

 s
o

lu
tio

n 
er

ro
r

10–3

Figure 9.—Integrated solution error as a function of the number of
   iterations of the finite difference equations (f = 1).
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Figure 10.—Analytical and numerical potential profile along wall for
   plane wave propagating in a semi-infinite hard walled duct (f = 1).
   (a) Real and imaginary parts. (b) Magnitude. 
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(a)

–1.0

Figure 11.—Developing history of disturbance propagation in Fourier transformed domain as a 
   function of number of iterations and time (f = 1). (a) Real and imaginary parts. (b) Magnitude. 
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Figure 11.—Concluded. (b) Magnitude.
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(a)

–1.0

Figure 12.—Developing history of disturbance propagation in Fourier transformed domain as a function
   of number of iterations and time (f = 5). (a) Real and imaginary parts. (b) Magnitude. 
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Figure 12.—Concluded. (b) Magnitude.
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